ROOF CONTROL DIVISION

Coal Mine Barrier Pillar Design

Dale Hamilton Geologist, Roof Control Division

Agenda

- Evaluating Barrier Pillars
- Barrier Pillars in Longwall Mining
- Barrier Pillars in Room & Pillar Mining
- Knox Mine Disaster
- Crandall Canyon 15 Years Later
- Future Challenges
- Summary

What is a Barrier Pillar?

 A block of coal left unmined to protect or isolate adjacent mined areas

Evaluating Barrier Pillars

Evolution of formulas

Dunn's Rule

Old English Barrier Pillar Law

Ash & Eaton Impoundment Formula

Pennsylvania Mine Inspector's Formula

British Coal Rule of Thumb

Pressure Arch Method

Pressure Arch

Evaluating Barrier Pillars

- Analysis of Coal Pillar Stability (ACPS) Software
- LaModel Software

Development	Defaults	Retreat	l		Multiple Seam	
_oading condition		First side gob parameters				7
C Development load (no nearby gob)		E	Extent of first	side gob (ft)	1500	
One active retreat section		Abutment and	gle for first sid	de gob (deg)	21	
One active section & one side gob		Barrier pillar	width for first	side gob (ft)	0	
One active section & two side gobs		Depth of s	slab cut in ba	arrier pillar (ft)	0	
	egi [2]					
		Pillars left in the side gob(s)				٦
		Row A				
Pillars left in the active panel		<u></u>				-

Longwall Chain Pillars

- Common layout in Central Appalachia and Illinois Basin
- Typically three or four entries with equal sized pillars
- Commonly used for weaker, shale dominated roof geology and depths less than 1,000 feet.

Longwall Yield-Abutment Pillars

- Common layout in Northern Appalachia
- Commonly used for shale dominated roof geology and depths less than 1,000 feet.

Longwall Yield Pillars

- Common layout in western mines
- Better suited for strong geology and depths that exceed 1,000 feet
- Utilized to help minimize burst risk
- Requires a Petition for Modification from MSHA to drive less than three entries

Longwall Yield-Abutment-Yield Pillars

- Common layout in gassy mines in Southern Appalachia
- Four entries are not ideal for drivage rates, but are necessary for ventilation
- Depths in the 1,000 to 2,000 foot range and strong roof geology

Inter-Panel Barriers

- Utilized in Southern Appalachia and Western mines
- Utilized in seismically active and bump-prone longwalls
- Controls tailgate bursts, but not headgate

Retreat Mining Barrier Pillars

- Utilized to compartmentalize pillared sections
- The barriers are occasionally mined (slabbed), but must be evaluated in their final form
- Especially wide pillar sections may not see the full benefit of the pressure arch

Retreat Mining Leave Pillars

- Pillars left behind to create a composite barrier
- Utilized for ventilation and escapeway purposes

Water Inundation

- The 1959 Knox Mine Disaster
- Mined into the Susquehanna River
- An estimated 10 billion gallons filled the mine

Crandall Canyon 15 Years Later

Pride & Performance

Future Challenges to Pillar Design

- Increasingly deep cover
- More multiple-seam mining interactions
- Challenging geologic conditions
- Variability in pillar composition
- More gas well protective pillars

Summary

- Properly designed barrier pillars are an essential part of safe mining
- ACPS is a straightforward and fast method for evaluating barrier pillars
- The Roof Control Division is available to help!
 - > email: <u>PillarInititive@DoL.gov</u>
- Analysis of Roof Support Systems (AMRS)
 - www.MineGroundControl.com

Hamilton.Delbert.D@DoL.gov

